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Abstract—We consider a task of classifying normal and patho-
logical brain networks. These networks (called connectomes)
represent macroscale connections between predefined brain
regions; hence, the nodes of connectomes are uniquely labeled
and the set of labels (brain regions) is the same across different
brains. We make use of this property and hypothesize that
connectomes obtained from normal and pathological brains
differ in how brain regions cluster into communities. We
develop an algorithm that computes distances between brain
networks based on similarity in their partitions and uses these
distances to produce a kernel for a support vector machine
(SVM) classifier. We demonstrate how the proposed model
classifies brain networks of carriers and non-carriers of an
allele associated with an increased risk of Alzheimer’s disease.
The obtained classification quality is ROC AUC 0.7 which is
higher than that of the baseline.

1. Introduction

Network science is becoming a popular instrument for
neuroscience research. At the macroscopic scale aggregated
neural connections of a human brain are modeled by a
graph called connectome. Network brain characteristics are
expected to provide insights into associations between brain
structure and particular phenotypes. More practical ques-
tions are whether connectomes can be useful in discriminat-
ing between normal and pathological brain structure (which
is a classification task) and predicting the onset of disease or
treatment outcomes (which can be considered a regression
task).

In this paper, we propose an approach for predicting
phenotypes from brain structure. For each brain network, we
consider its optimal partition into clusters; we assume that
these best partitions capture the most important structural
aspects of connectomes. We next hypothesize that these
partitions are similar between brain networks that belong
to the same class (i.e., networks of normal participants
or those with some pathology); we expect brain network
partitions to differ between different network classes (i.e.,

between normal and pathological brain networks). We thus
compute pairwise distances between connectomes based on
the similarity in their optimal partitions into clusters. We
use an SVM classifier with the kernels produced from these
distances. We demonstrate how this pipeline works on a
task of connectome-based classification of carriers versus
non-carriers of an allele associated with an increased risk
of Alzheimer’s disease.

This paper is organized as follows. In the next section,
we describe how brain networks are constructed and discuss
why these graphs are different from those arising in other
application areas of network science. In Section 3, we pro-
vide a formal problem statement for a task of classification
of connectomes and show how this problem can be tackled
using kernel classification methods. In Section 4, we provide
details on our proposed approach. We next describe a public
dataset used to demonstrate the performance of the proposed
algorithm and discuss the results.

2. Brain networks

Human connectomes are produced based on neuroimag-
ing data obtained using either diffusion-tensor or functional
magnetic resonance imaging modality (DTI and fMRI, re-
spectively). In this paper, we only consider structural DTI-
based connectomes.

To produce brain networks, brain gray matter images
identified using segmentation algorithms are parceled into
regions according to a brain atlas; these regions are the
nodes of the constructed network. White matter streamlines
are detected using a tractography algorithm. The number of
streamlines connecting each pair of brain regions produces
a weight for an edge between the respective nodes.

There is no unique way to construct a structural connec-
tome from a brain scan. Researchers have to make choice on
both how the nodes are defined and how the edges are recon-
structed. A paper [1] examines the behavior, structure and
topological attributes of whole-brain anatomical networks
over a range of nodal scales and gray-matter parcellations.



We refer to [2] for an example study of how connectome-
based machine learning outcomes can be affected by the
choice of a tractography algorithm used to produce network
edges. An insightful general discussion of some method-
ological pitfalls of connectome construction can be found
in [3].

Still, there are some properties common to all
macroscale connectomes regardless of the particular algo-
rithm used for their reconstruction:

• connectomes are relatively small graphs, usually
with at most few hundreds of nodes;

• the graphs are undirected, i.e. the adjacency matrices
are symmetric;

• the graphs are fully connected;
• each node is uniquely labeled, and the set of labels

is the same across connectomes reconstructed with
a given brain atlas;

• nodes are localized in 3D space;
• the graphs are sparse;
• edges are weighted, and weights are proportional to

the number of streamlines between the brain regions
detected by a tractography algorithm;

• edges have physical lengths.

The most important property for this study is that each
node has its unique label and a set of labels is the same
across all connectomes. First, this means that the problem
of graph isomorphism never arises in brain network studies.
Second, this property allows us to meaningfully compare
partitions of brain networks across different participants.
Since the sets of node labels (brain regions) are the same
across participants, we can question whether or not these
nodes cluster into similar communities in different brains.
In the next sections, we introduce a classification pipeline
that is based on this idea.

3. Machine learning on connectomes

Machine learning prediction of brain disorders based on
neuroimaging data has gained increasing attention in recent
years. Unfortunately, this research area inherits many prob-
lems of neuroimaging-based machine learning studies. We
refer to [4] for the recent review on this topic; importantly,
the authors emphasize that the main bottleneck of this field
is the limited sample size and hence the problem of data
reduction and a high risk of overfitting. When it comes to
classification of connectomes, the task becomes even more
tricky. In the next sections, we provide a formal problem
statement and discuss how it can be tackled within the
machine learning framework.

3.1. Problem statement

Let Xi be a brain network, yi be a class label. Given a
training set of pairs (Xi, yi) and the test set of input objects
Xj , the task is to make a good prediction of the unknown
class label yj . Throughout this study, we only consider the
binary classification tasks, i.e. yi ∈ {0, 1}.

To deal with networks Xi within machine learning
framework, one can use graph embedding methods. Alterna-
tively, one can define a kernel on graphs and use the kernel
trick to feed this kernel to an SVM classifier.

3.2. Kernel SVM classifier

The SVM classifier is able to accept any input objects,
not necessarily a set of vectors from Rp. Any positive semi-
definite function K(xi,xj) : X2 → R on the input data
X can be used as a kernel for the SVM classifier provided
that:

N∑
i=1

N∑
j=1

K(xi,xj)cicj ≥ 0

for any (x1, x2, . . . , xN ) ∈ X and any coefficients
(c1, c2, . . . , cN ) ∈ R. There are no constraints on the struc-
ture of the input data X.

There exist methods to produce graph kernels straight-
forwardly; some examples are walk kernel [5] and shortest
path length kernel [6]. An alternative approach is to intro-
duce a distance between graphs and produce a kernel based
on this distance measure. In this study, we use this latter
approach and produce kernels based on pairwise distances
between graphs. Let G and G′ be the networks and ω(G,G′)
be a distance between these networks. We build a graph
kernel K using the distance ω as follows:

K(G,G′) = e−αω(G,G
′) (1)

Note that positive semi-definiteness of this kernel is
guaranteed when ω is a metric. Paper [7] discusses kernels
which are not necessarily positive semi-definite, namely
those for which triangle inequality does not hold for a
distance measure ω in (1). The authors [7] claim that these
kernels can always be made positive definite by an appro-
priate choice of the parameter α; however, they emphasize
that forcing a kernel to be positive definite can reduce its
expressiveness and diminish classification accuracy. In this
paper, we vary the parameter α for all kernels, including
those using true metric ω.

To evaluate baseline performance of a classifier with
the distance-based kernel, we use the simplest possible
definition of distance between networks, which are the L1

and L2 norms between the respective adjacency matrices.
For two networks G and G′ with n× n adjacency matrices
A = {aij} and A′ = {a′ij} an L1 distance is given by:

ωL1
(G,G′) =

n∑
i=1

n∑
j=1

|aij − a′ij | (2)

An L2 (Frobenius) norm is defined by:

ωL2
(G,G′) =

√√√√ n∑
i=1

n∑
j=1

(aij − a′ij)2 (3)

We produce kernels (1) based on both distance measures
and run SVM with these kernels to obtain the baseline
classification quality. We next compare the performance of
our proposed algorithm against these baselines.



4. Partition-based distances between graphs

We propose to estimate similarity between brain net-
works based on whether or not their nodes cluster into
similar communities. We hypothesize that brain networks
that belong to a same class produce partitions that are
more similar than those obtained for networks from different
classes. If so, a kernel based on these distances between
network partitions should be informative for a task of
discriminating between network classes (e.g., normal and
pathological networks). In this section, we describe the
algorithms we use to produce partitions of brain networks
and evaluate similarity of these partitions.

4.1. Clustering algorithms

We use three different algorithms to obtain partitions of
brain networks: Newman leading eigenvector method [8],
Louvian method [9], and Greedy modularity optimization
[10].

All these methods use modularity as an optimization
function. Modularity [11] is a property of a network and a
specific proposed partition of this network into communities.
It measures whether the partition is a good one in the sense
that there are many edges within communities and only a
few between them. One can find modularity Q of a partition
using the following formula:

Q =
1

2m

∑
ij

[
Aij −

didj
2m

]
δ(i, j), (4)

where Aij is a graph adjacency matrix, m is the total number
of edges of a given graph, δ-function δ(i, j) is 1 if nodes
i and j belong to the same cluster and 0 otherwise, and di
denotes i’th vertex weighted degree computed by:

di =
∑
j

Aij , (5)

The Newman leading eigenvector method uses the so-
called Laplacian matrix defined by:

L = D −A, (6)

where D is the diagonal matrix of weighted degrees com-
puted by (5). Different nodes get their labels according
to the sign of the corresponding values of the Laplacian
eigenvector.

Both Louvain and Greedy modularity methods were
proposed for large-scale networks. They both start from a
partition where each node has its own label and iteratively
combine them into a huge one thus building a full hierar-
chical community structure.

4.2. Evaluation of the similarity of partitions

Using each of the clustering algorithms, we obtain
best partition of each brain network. We next estimate the
pairwise similarity of partitions obtained with the same

algorithm for different brain networks. To do this, we use
adjusted Rand score (ARI) and adjusted mutual information
(AMI) [12].

Let U = {U1, U2, · · ·Ul} and V = {V1, V2, · · ·Vk} be
partitions of two networks GU and GV with the same sets
of node labels, l and k be the number of clusters in the
partitions U and V , respectively. To define ARI between
these partitions, we construct a contingency table:

U, V V1 V2 . . . Vk sum
U1 s11 s12 . . . s1k a1
U2 s21 s22 . . . s2k a2
...

...
...

. . .
...

...
Ul sl1 sl2 . . . slk al

sum b1 b2 . . . bk

Here sij denotes a number of objects common between Ui
and Vj . ARI then is given by:

∑
i,j

(
sij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bi
2

)]
/
(
s
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bi
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bi
2

)]
/
(
s
2

) . (7)

Mutual information (MI) between the partitions U and
V is defined by:

MI(U, V ) =

l∑
i=1

m∑
j=1

P (i, j) log
P (i, j)

P (i)P ′(j)
, (8)

where P (i) is the probability of a random sample occurring
in cluster Ui and P ′(j) is the probability of a random sample
occurring in cluster Vj . AMI is adjusted by:

AMI(U, V ) =
MI(U, V )− E(MI(U, V ))

max(H(U), H(V ))− E(MI(U, V ))
, (9)

where H(U) is the entropy:

H(U) = −
l∑
i=1

P (i) logP (i), (10)

Both ARI and AMI take the values in [0, 1], with the
value of 1 indicating exactly the same partitions. We thus
define a distance ω(GU , GV ) between networks GU and GV
by:

ω(GU , GV ) = 1− I(U, V ), (11)

where I(U, V ) is the index of similarity (ARI or AMI)
between the respective two partitions. Hence, networks with
the same partitions have zero distance, and the maximum
distance is 1.

We next produce kernels (1) based on these pairwise
distances and run SVM classifiers with these kernels to dis-
criminate between normal and pathological brain networks.



Figure 1. The proposed algorithm of classification.

5. Methods

Our proposed pipeline is summarized in Figure 1. In
this section, we describe a dataset and provide details on
the algorithm.

5.1. Data and preprocessing

We use a publicly available UCLA APOE-4 dataset
(UCLA Multimodal Connectivity Database [13]) that in-
cludes precomputed matrices of structural connectomes.
These are DTI-based connectivity matrices of carriers and
noncarriers of the APOE-4 allele associated with the higher
risk of Alzheimer’s disease. The sample includes 30 APOE-
4 noncarriers, mean age (age standard deviation) is 63.8
(8.3), and 25 APOE-4 carriers, mean age (age standard
deviation) is 60.8 (9.7).

Each brain is partitioned into 110 regions using the
Harvard-Oxford subcortical and cortical probabilistic atlases
as implemented in FSL [14]. Hence, this dataset includes
110×110 connectivity matrices.

Edges are defined based on the results of the FACT
algorithm [15]. Raw fiber counts in these matrices are
adjusted for the unequal region volumes (number of seed
voxels in each region). This is done by scaling each edge
by the mean volume of its two adjacent regions.

The dataset is analyzed in [16]. However, the authors
use only group-based comparison and do not provide any
machine learning baseline for this dataset.

Based on the work on structural connectomes [17] we
additionally scale the edges by the physical distances be-
tween the respective regions:

aij =
arawij

λij
, (12)

where arawij is the original weight of the edge between the
nodes i and j, and λij is the Euclidean distance between
centers of the regions i and j. The distances are computed

based on the standard Montreal Neurological Institute (MNI)
coordinates of region centers provided by the authors of the
dataset.

5.2. Machine learning pipeline

We first compute the matrices of pairwise distances
between connectomes using each of the three algorithms
described in Section 4.1 and each of the two similarity
measures described in Section 4.2. Together with the two
baseline distance matrices (2) and (3), this gives us eight
distance matrices and hence eight kernels obtained by (1).

In computation of all kernels, we vary the values of α
in the range from 0.01 to 10. These kernels are then used in
the SVM classifier. The penalty parameter varies from 0.1
to 50. We report the results for the models with the optimal
values of α and the penalty parameter. For the best-fitting
models, we also show how the classification quality changes
depending on these two parameters.

We evaluate predictive quality of the algorithms based
on the area under the receiver operating characteristic curve
(ROC AUC). We run each model with 10-fold cross-
validation and combine predictions on all test folds to access
the quality of prediction on the entire sample. We repeat
this procedure 100 times with different 10-fold splits, thus
producing 100 ROC AUC values.

For the best-fitting model, we also report the values
of accuracy, precision and recall obtained using the same
procedure. We also show the ROC-curve averaged across
different runs of the algorithm.

5.3. Tools

We use Python and IPython notebooks platform, specifi-
cally NumPy, SciPy, pandas, matplotlib, seaborn, networkX,
community, igraph and scikit-learn libraries. All scripts will
be available at https://github.com/kurmukovai/DaMNet2016.
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Figure 2. Classification quality of the SVM classifiers with the partition-
based kernels. Boxplots show ROC AUC values based on 100 runs of
10-fold cross-validation algorithm with different splits of the data.

6. Results and discussion

Figure 2 compares the performance of kernel SVM
with different clustering algorithms and similarity metrics
used to produce pairwise distances between brain networks.
Baseline refers to the SVM with the kernels that use L1 and
L2 norms between the adjacency matrices of the networks.

The best classification quality is achieved with the kernel
that uses ARI-based distances between network partitions
obtained using Louvian method. SVM classifier with this
kernel produces mean ROC AUC 0.691 (averaged over 100
runs of the algorithm) with a standard deviation of 0.030.
This classifier clearly outperforms the baseline classifiers
which only give ROC AUC values 0.554 and 0.523 (standard
deviations 0.037 and 0.050) for the L1 and L2 norms,
respectively.

Of the three clustering algorithms used in this study,
Louvain method is the most informative for a given clas-
sification task. Note that we do not limit the number of
clusters when running this algorithm. An actual number of
clusters detected for a given set of brain networks varies
from six (for three networks) to ten (for one network), with
the median value of seven clusters. For a purpose of illus-
tration, Figure 3 shows an example brain network from this
dataset with the nodes located in their physical coordinates
and colored according to the best partition obtained using
Louvain method.

We next evaluate how the performance of the SVM
with the Louvain partition-based kernel depends on the
parameter α used in (1) and the penalty parameter of the
SVM classifier. The results are shown in Figure 4. Both
curves are smooth and come to a plateau after some initial
interval of change.

Finally, for our best-fitting model Figure 5 shows the
ROC-curve averaged over 100 runs of the algorithm and
the boxplots of the values of accuracy, precision and recall.
Note that the accuracy that would be obtained by a trivial
classifier which assigns all observations to one class is 0.545
for this sample.

Figure 3. Example of brain network: nodes in their physical coordinates
(axial view). Node size is proportional to weighted node degrees, edge
strength is proportional to the edge weight (12). Different node colors refer
to different clusters obtained using Louvain algorithm.
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Figure 4. Classification quality of the SVM with the partition-based kernels
based on Louvain method and ARI similarity index. The plots show mean
ROC AUC values and 90% confidence bounds on mean depending on the
values of α used to compute a kernel and the penalty parameter of the
SVM classifier.
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Figure 5. Classification quality of the SVM with the partition-based kernel
based on Louvain method and ARI similarity index: accuracy, precision and
recall over 100 runs of the algorithm (left) and the ROC-curve averaged
over 100 runs of the algorithm (right).



Mean accuracy obtained with our algorithm is 0.609,
standard deviation across 100 runs is 0.035; this is higher
than the accuracy that would be obtained with a trivial
classifier. The boxplots of precision and recall values show
that our classifier is biased: it shows relatively high pre-
cision (mean 0.788, standard deviation 0.156) but much
lower recall (mean 0.196, standard deviation 0.061). In other
words, the algorithm is quite precise in detecting pathologi-
cal networks (networks identified as those of APOE-4 allele
carriers truly belong to this class). However, it tends to miss
many pathological networks and identify them as belonging
to APOE-4 non-carriers (hence low recall values).

7. Conclusions

In this paper we considered classification of normal
and pathological brain networks. For each brain network
(connectome), we found its best partition into clusters.
We hypothesized that these partitions were similar between
brain networks that belong to the same class (normal or
pathological) and differ across classes (i.e., between subjects
with and without brain disease). We proposed to compute
pairwise distances between connectomes based on the sim-
ilarity in their optimal partitions into clusters and use these
distances to produce a kernel for an SVM classifier.

Within the proposed pipeline, we compared the per-
formance of three different clustering algorithms used to
find most informative partitions of brain networks and two
similarity measures used to account for differences in the
partitions across brain networks. We compared the perfor-
mance of the proposed SVM with the partition-based kernel
against that of the SVM with the kernels based on distances
between graphs computed as L1 and L2 norms.

We used publicly available dataset that included struc-
tural connectomes of carriers and non-carriers of an allele
associated with an increased risk of Alzheimer’s disease.
For this particular classification task, the best-performing
classifier was SVM with the partition-based kernel that used
Louvain method of clustering brain networks and adjusted
Rand index of similarity between partitions. This classifier
outperformed the baseline and produced the ROC AUC
value of 0.7. The results were stable with respect to the
kernel coefficient and SVM regularization parameter. De-
tailed evaluation showed that the classifier tended to be over-
conservative in that it showed high precision but relatively
low recall.

Performance of the proposed pipeline needs further
evaluation on other datasets and classification tasks. Other
clustering algorithms might also be of interest for further
studies.
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